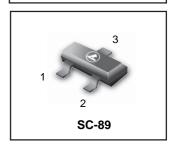
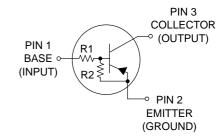


Digital transistors (built-in resistors)

FEATURES:

- 1) Built-in bias resistors enable the configuration of an inverter circuit without connecting external input resistors (see equivalent circuit).
- 2) The bias resistors consist of thin-film resistors with complete isolation to allow positive biasing of the input. They also have the advantage of almost completely eliminating parasitic effects.
- 3) Only the on/off conditions need to be set for operation, making device design easy.


STRUCTURE:


PNP digital transistor (Built-in resistor type)

MAXIMUM RATINGS (T_A = 25°C unless otherwise noted)

Rating	Symbol	Value	Unit
Collector-Base Voltage	VCBO	50	Vdc
Collector-Emitter Voltage	VCEO	50	Vdc
Collector Current	IC	100	mAdc

LDTA123JET1

THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
Total Device Dissipation, FR-4 Board (Note 1.) @ T _A = 25°C Derate above 25°C	PD	200 1.6	mW mW/°C
Thermal Resistance, Junction to Ambient (Note 1.)	$R_{ heta JA}$	600	°C/W
Total Device Dissipation, FR-4 Board (Note 2.) @ T _A = 25°C Derate above 25°C	PD	300 2.4	mW mW/°C
Thermal Resistance, Junction to Ambient (Note 2.)	$R_{ heta JA}$	400	°C/W
Junction and Storage Temperature Range	T _J , T _{stg}	-55 to +150	°C

- 1. FR-4 @ Minimum Pad
- 2. FR-4 @ 1.0 × 1.0 Inch Pad

DEVICE MARKING

LDTA123JET1=6M

0.056

0.047

Resistor Ratio

ELECTRICAL CHARACTERISTICS (T_A = 25°C unless otherwise noted)

Characteristic	Symbol	Min	Тур	Max	Unit	
OFF CHARACTERISTICS						
Collector–Base Cutoff Current (V _{CB} = 50 V, I _E = 0)	I _{CBO}	-	_	100	nAdc	
Collector–Emitter Cutoff Current (V _{CE} = 50 V, I _B = 0)	ICEO	_	-	500	nAdc	
Emitter–Base Cutoff Curren (V _{EB} = 6.0 V, I _C = 0)	IEBO	_	_	0.5	mAdc	
Collector–Base Breakdown Voltage (I _C = 10 μA, I _E = 0)	V _(BR) CBO	50	_	_	Vdc	
Collector–Emitter Breakdown Voltage (Note 3.) (I _C = 2.0 mA, I _B = 0)	V(BR)CEO	50	-	-	Vdc	
ON CHARACTERISTICS (Note 3.)						
DC Current Gain (V _{CE} = 10 V, I _C = 5.0 mA)	hFE	80	140	_		
Collector–Emitter Saturation Voltage ($I_C = 10 \text{ mA}, I_E = 0.3 \text{ mA}$)	VCE(sat)	-	_	0.25	Vdc	
Input Resistor	R1	1.54	2.2	2.86	kΩ	

 R_1/R_2

0.038

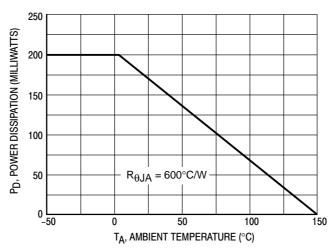


Figure 1. Derating Curve

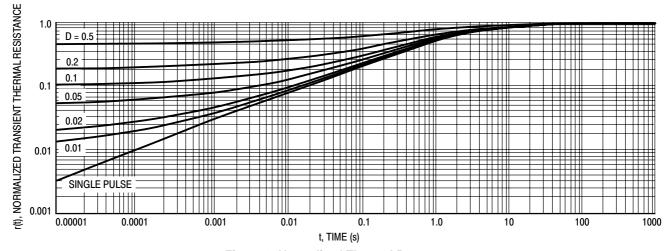
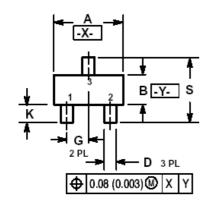
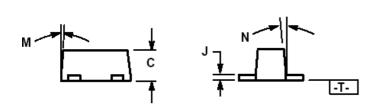
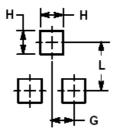



Figure 2. Normalized Thermal Response

SC-89



NOTES:


1.DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.

2.CONTROLLING DIMENSION: MILLIMETERS
3.MAXIMUM LEAD THICKNESS INCLUDES LEAD
FINISH THICKNESS. MINIMUM LEAD THICKNESS
IS THE MINIMUM THICKNESS OF BASE
MATERIAL.

4.463C-01 OBSOLETE, NEW STANDARD 463C-02.

	MILLIMETERS			INCHES			
DIM	MIN	NOM	MAX	MIN	NOM	MAX	
Α	1.50	1.60	1.70	0.059	0.063	0.067	
В	0.75	0.85	0.95	0.030	0.034	0.040	
С	0.60	0.70	0.80	0.024	0.028	0.031	
D	0.23	0.28	0.33	0.009	0.011	0.013	
G	0.50 BSC			0.020 BSC			
Н	0.53 REF			0	0.021 REF		
J	0.10	0.15	0.20	0.004	0.006	0.008	
K	0.30	0.40	0.50	0.012	0.016	0.020	
L	1.10 REF			0.043 REF			
M			10 °	-		10°	
N			10 °			10°	
S	1.50	1.60	1.70	0.059	0.063	0.067	

